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Abstract- Efficient computation of exact group delay
and its sensitivities w.r.t. design parameters in multiconduc-
tor transmission line networks is presented. This method
is combined with minimax optimization to perform gradi-
ent based minimization of delay and distortion in high-speed
VLSI interconnects.

I. INTRODUCTION

As the signal speed increases, the effects of VLSI in-
terconnects such as delay, distortion and crosstalk become
the dominant factor limiting the performance of the overall
VLSI system. With subnanosecond rise times, the electrical
length of the interconnections becomes a significant fraction
of the signal wavelength. Consequently distributed and lossy
transmission line models must be used. There is a thrust of
research in the time-domain analysis of such interconnect
effects, e.g., [1-6]. Design optimization of interconnects is
addressed very recently[7], where transient responses are im-
proved by time domain optimization.

In this paper we present an alternative approach to
minimization of transient responses such as delay, distortion
and crosstalk by using frequency domain information such
as group delay.

Group delay and its sensitivities have been an attrac-
tive vehicle for circuit design such as design of filter and IC
digital cells[8-10]. However for lossy multiconductor trans-
mission line networks, group delay sensitivity is much more
involved and has not been previously presented.

The purpose of this paper is two fold. Firstly, a tech-
nique for efficient computation of exact group delay and its
sensitivities is derived for multiconductor transmission line
networks. Secondly, the group delay information is combined
with gradient based minimax optimization to minimize delay
and distortion in VLSI interconnects.

II. NETWORK EQUATIONS WITH
MULTICONDUCTOR TRANSMISSION LINES

The admittance matrix of a multiconductor transmis-
sion line required in a modified nodal equation of the overall
circuit has been described in detail in[1]. Suppose the net-
work 7 consists of lumped elements and N, multiconductor
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transmission lines. The modified nodal equations for the
overall network 7 are

dva(t)
dt

where C,; and G, are N; by N, matrices determined by
lumped elements in the network. v,.(t) is the vector of node
voltage waveforms appended by independent voltage source
currents and inductor current waveforms. Dy, is an incidence
matrix containing 1’s and 0’s which maps i(t), the terminal
current waveform of the kth distributed transmission line,
into the Nr-node space of network 7. e,(t) is the vector of
source waveforms.

The s-domain equation is obtained by taking Laplace
transform of (1)

Cr

+Grvﬂ(t)+§Dkik(t) = ef(t), (1)

k=1

Y Vi(s) = E.(s)+ C,v(0), (2)
where
N,
Y. = Gr+sCr+) DyAD], (3)
k=1

and A is the nodal admittance matrix of the kth distributed
transmission line.

The lossy multiconductor transmission line is assumed
to be uniform along its length with an arbitrary cross sec-
tion. The cross section of an Nj -conductor transmission
line can be described by per unit length impedance and ad-
mittance matrices Zy, and Y, respectively. Zy, and Y, can
be computed from physical/geometrical parameters of the
transmission line through quasi-static analysis [11] or em-
pirical formulas [12]. Let 77 be an eigenvalue of the matrix
Z1. Y with an associated eigenvector x;. The nodal admit-
tance matrix for the multiconductor transmission line is[1]

S.E4 S;l S,‘Egs;l

A= gE,s71 SES: |’ (4)
where
i 1+ e~ 2l
El = dla.g.{m, 1= 1,2,...,Nk}, (5)
E2 = diag.{m, i:l,?,...,Nk} (6)

and ! is the length of the transmission line. S, is a ma-
trix containing all eigenvectors x;, ¢ = 1,2,...,N;. T'is a
diagonal matrix with I';; = ~,, and S, = Z7'S,T.
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III. COMPUTATION OF EXACT GROUP
DELAY AND ITS SENSITIVITIES

A. Computation of Group Delay
Let

Vour(s) = uTVy (s) (M

be the response of interest in the s-domain, where u is a
constant N, -vector. Group delay can be defined as[8,9]

]- a‘/:)ut

To = ~Real{5;——"*}. (8)

To compute %"S—M, we use the adjoint sensitivity ap-
proach [8,9],

a‘/;ut ar\T aY‘rr aEﬂ'
2 = (V) [‘a‘;“ =5 )
JA OE,
= (Vi)'l(Cx +ZDkaDT)V =5

where V2 is solved from adjoint equation

YIVE= - (10)

To compute —3(,%&, we first compute the sensitivities of
eigenvalues v? and eigenvectors x, w.r.t. frequency s by solv-
ing the linear equation

2. 9% 8Z.Y,)
& ’

Is 0
where
2
_ Y. U - ZLYL X,
B= I: T 0 ] . (12)
The solution of (11) is used to obtain % and %Ssl. The
sensitivity BTAS’E is then computed from:
A [s, 0] [2 o E; E,
9s | 0 S, | {0 & E, E,
S, 0 8E, JE; 88y
Vel gAY ] w

B. Computation of Group Delay Sensitivity
Let ¢ be a design variable. In order to obtain the sen-
sitivity for group delay, we differentiate (8)

a]b La‘/out 8‘/0141,‘ _ 1 82‘/out } (14)
d¢ Vi 06 0s  Vou 0504~

Since 8—;%4 can be calculated according to [2], here the prob-

= Real{

lem is to find -8—8931 Differentiating (9) w.r.t. ¢ yields
Vour ave)T [ OE,,
9504 94 as Ve~ s
r.0%Y Y 0V,
V2 ol ki

96
where sensitivity of adjoint response is solved from
T avy 8(Y77;)

8¢ 9¢

vz (16)
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and the second-order sensitivity of Y, is
Y, oc, &
=_— D
5596 ~ a3 T 2 Dk

, Now the problem is to compute the second derivative
%ﬁﬁ which requires the calculation of second derivatives of

9%A,,
Js0¢

nI. (17)

eigenvalues and eigenvectors. From (11), we have

%%, (2 Y1) 8(ZLYL) ox
B ‘23‘3 = 8e5g + e
8s0¢

(18)

2
B ontains first order sensitivities %L’

%—’;L and J%l which have already been solved in calculat-

S/
ing S5a.

where the derivative 28 55

The solution of linear equation (18) needs only
forward/backward substitutions since the LU factors of B is
available from solving (11)

3%S,

2 2
Once we have &% % 8¢ and 5= 33%, we can easily obtain §2% o

and &3¢ 8584) Finally from (13), & asa¢ can be solved from
PAc[S, 0] _ &S 0 E, E,
836¢ 0 S, 0 %‘; E, E,
08 9B, 8E 9s 8E, oE
=0 = E SR 22 oK, ok,
Al ] 4R E]
s 8¢ 8¢ L) s s
8’E 9’E
(5 o] B B|-%% 4]
0 8. ]| 568 Fw0s 9 | 0 Fp
a2s as
5364 0 OAL | & 0
LBl mE L] w
[ 0 m; Js 0 5e

The formulas for group delay and its sensitivity analysis
are implemented in a program for the design of distributed
networks with lossy coupled transmission lines. Sensitivi-
ties computed from the new formulas were compared with
that from perturbation for the 3 transmission line example
of Fig. 1. Excellent agreement was observed. Computation
speed by the new formulas is faster than by perturbation.

IV. FORMULATION OF INTERCONNECT
OPTIMIZATION

It is well known that the group delay contains infor-
mation of signal propagation delay. For RC networks Vlach
et al. recently verified group delay at frequency zero as be-
ing exactly equal to Elmore delay and observed an empirical
relation between group delay and signal delay of responses
corresponding to a step excitation[10]. We take advantage
of group delay information for reduction of signal propaga-
tion delay in a distributed network environment. The actual
optimization is performed in the frequency domain.

Let ® denote all design variables including physical/
geometrical parameters of the transmission lines and param-
eters in termination/matching networks. Let Sgu(sk) and



Sci(sk) be upper and lower specifications on group delay Tg,
respectively. Let Wg be a positive weighting factor. The
minimization of signal delay can be achieved by minimizing

We(Te(®, st) — Seu(se)) (20)

over a range of frequencies, s = jwi, k = 1,2,..., K. By
imposing a lower specification on group delay, we have error
function

~We(Te(®, st) — Sgalsk)) (21)

A typical lower specification is Sgi(sx) = 0. Simultaneous
minimization of (20) and (21) over a frequency range reduces
the group delay and improves the flatness of group delay. A
flat group delay contributes to the reduction of signal distor-
tion.

Let F(@,s;) be the transfer function of the network.
Let Sri(se) be the lower specification on the magnitude of
F(®,s;) and Wy be a positive weighting factor. Minimizing
the following error functions ’

—WEe[|F(®, 5¢)] — Sri(sk)] (22)

increases the response signal level,
Finally, reduction of crosstalk is realized by minimizing
the magnitude of crosstalk spectrum V(®,s;) using

Wo(|V(®,si)| — So(se)), (23)

where Sc(si) is the specification on the magnitude of spec-
trum V(®, si).

Let e(®) be a m-vector containing all necessary error
functions in the form of (20)-(23). The optimization problem
is to find @ such that

U(®) = maximum{e; (@), ea(P®),...,en(®)} (24)

is minimized subject to electrical and physical constraints
g(®) < 0 and h(®) = 0. The constrains represent design
rules. For example the total length of several interconnect
lines must be constrained by the physical dimensions of the
circuit board. The total separation between several coupled
conductors must be limited by the geometrical space avail-
able to them. The minimax optimization of (24) is solved
by a gradient-based two stage minimax algorithm[13]. The
derivatives of e w.r.t. ® required by the optimizer is obtained
by the new approach of sensitivity analysis described.

V. EXAMPLES

Ezample 1: 8 Transmission Line Network

The circuit of Fig. 1 is excited by a 6ns trapezoidal sig-
nal. The time responses before optimization are plotted in
Fig.2. The objective is to reduce signal delay of V.un and
Voutz, and the crosstalk voltages Viross1 and Viross2, respec-
tively. Design variables ® include capacitors Cp and Cj,
resistor Ro, lengths of the three transmission lines I1, I; and
I5, distance between the 2 conductors d and the width of the
conductors w. The initial variable values are

@ L I Is d w Cy C3 Ro)™
[50 40 30 2.49 0.58 2 1 50]",
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Fig.1 Circuit schematic for the 3 transmission line network
example.

where the unit for length, width and distance is mm. The
units for capacitors and resisters are pF and {2, respectively.
The total length of the three transmission lines is fixed at
120mm and the width of each conductor plus the spacing be-
tween them is fixed at 3.07mm. The specifications on group
delay and crosstalk spectrum are shown in Fig.3. These
specifications are imposed at 20 frequency points, s = jkwy,
k=1,2,...,20 and w; = 0.0837758 x 10°rad/s. After op-
timization, the objective function (24) was reduced from
1.0134 to -0.0386. The variables after optimization are

& =[98.38 11.62 10 2.97 0.1 0.1 8.884 197.8]7.

The group delay after optimization, as plotted in Fig.3, is
much lower and flatter than before optimization. Time re-
sponses after optimization are plotted in Fig.2. The propa-
gation delay times for V,,; and V.2 are both reduced from
1.6ns to 1.2ns. The magnitude of crosstalk signals Vi.osa
and Vo552 are both reduced by more than 55%.
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Fig.2 The 3 transmission line example. Transient volt-
ages(volts) vs. time(ns) before (solid line) and after
(dashed line) optimization. (a). Vouu, (b). Vousz, (¢).
Veross1 and (d) Viross2.
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Fig.3 The 3 transmission line example. Group delay and
spectrum responses vs. angular frequency(rad/s) be-
fore (solid line) and after (dashed line) optimization.
(a). T for Vum, (b). Tg for Voue, (c). spectrum for
Veross1 and (d). spectrum for Vorggen-

Ezample 2: 25 Transmission Line Network

The frequency domain optimization approach is also
applied to a 25 transmission line network which consists of
13 4-conductor transmission lines and 12 single-conductor
transmission lines. There are 27 design variables includ-
ing the lengths of the 4-conductor transmission lines, the
distances between the conductors, 7 terminating resistances
and 4 terminating capacitances as described in {7]. This cir-
cuit example was optimized using a time-domain optimiza-
tion approach in [7]. -Here we use frequency domain opti-
mization with specifications on group delay and spectrum of
crosstalks. The total number of error functions is 120 and
the total number of linear constraints is 43. After 12 itera-
tions of optimization, the objective function (24) was reduced
from 22.908 to -1.177. At the frequency domain solution, the
corresponding transient responses of the network are compa-
rable to those from direct time domain optimization[7]. The
propagation delays and the peaks of crosstalk voltages were
reduced by more than 40% and 87%, respectively.

The CPU times for our approach and direct time do-
main approach[7] are 4519 and 15410 seconds(on SPARCsta-
tion 2), respectively. A CPU speedup factor of 3.4 is achieved
by the new approach.

VI. CONCLUSION

An efficient method is presented for the computation of
exact group delay and its sensitivities with respect to design
parameters in multiconductor transmission line networks.
By combining this method with minimax optimization, a
frequency-domain approach is developed to indirectly min-
imize delay, distortion and crosstalk of transient responses
in high-speed VLSI interconnects. It can be used as an effi-
cient way in the design of interconnects in high-speed VLSI
systems.
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